

A Neural Network Model of the Effect of Prior Experience with Regularities on Subsequent Category Learning

Casey L. Roark^{1,2}, David C. Plaut^{1,2,3}, and Lori L. Holt^{1,2,3}

¹Carnegie Mellon University Department of Psychology, ²Neuroscience Institute, ³Center for the Neural Basis of Cognition

Introduction

Category structures and neural mechanisms of learning

- A popular dual systems theory of category learning posits that the layout of categories in space drives neural mechanisms supporting learning.
- Rule-Based (RB) categories are thought to require selective attention to individual stimulus dimensions and Information-Integration (II) require pre-decisional integration across multiple dimensions (Ashby et al., 1998; Ashby & Maddox, 2011; Yi & Chandrasekaran, 2016).

Assumption of independence of perceptual dimensions

- Underlying psychological representations of simple visual input dimensions are well understood, but many dimensions are not as independent (Garner, 1974; Roark & Holt, 2019; Scharinger et al., 2013).
- In a simulation experiment, we investigate the effect of prior experience on subsequent learning of 'RB' and 'II' category structures to understand how psychological representations influence learning.

Neural Network Methods

Network Architecture

- Representation training: autoencoder with 20-unit sensory input, 10-unit hidden perceptual representation layer and 20-unit autoencoder output layers (Figure 1).
- Category learning: additional category decision output layer (2 units representing the two categories).

Representation Training

 Trained the network on five types of stimulus distributions representing five possible hypothetical relations between dimensions (Figure 2).

Figure 1. Layout of network architecture.

Category Learning

- Trained the network with feedback—using the learned hidden perceptual representations—on four types of category structures that require different usage of the two dimensions (Figure 3):
 - Information-Integration (II) Positive & Negative
 - Rule-Based (RB) X Dimension and Y Dimension

Figure 3. Category distributions for the category training phase.

Acknowledgements

This work was supported by a training grant from the National Institute General Medical Sciences to Casey L. Roark (T32GM081760). Note: CLR is now at the University of Pittsburgh, Department of Communication Science & Disorders

Simulation Results

- We assessed the impact of representation training (Independent, Positive, Negative, Y-Dim, X-Dim) on the four types of category learning structures (IIPos, IINeg, RBY, RBX). We trained and tested on all 200 stimuli from each category.
- Accuracy was the percent of category exemplars for which the model met a target activation criterion of 0.5 (Figure 4).
- Performance of the model on these category structures greatly depended on the nature of the pre-trained representations.
- Existing perceptual representations can impact the outcomes of category learning, especially when the physical dimensions or experimenter-defined dimensions do not align with the dimensions of representations.

Figure 4. Model's performance accuracy in the category learning phase.

Comparison to Human Behavior

- For sake of brevity, we present a comparison of human behavior in one auditory experiment. Please see the full conference paper for other comparisons.
- Humans in Roark & Holt (2019) learned auditory categories defined on the dimensions of center frequency (Hz) and modulation frequency (Hz), which are difficult to selectively attend to.
- The pattern of the human behavioral accuracy (Figure 5) most closely aligns with the model's performance after having been pre-trained on the **Positive** training distribution.
- These acoustic dimensions may be represented in a manner that reflects a long-term positive relationship between the dimensions, providing insight into the nature of perceptual representations.

Figure 5. Human behavior from Roark & Holt (2019) and model accuracy after *Positive* training.

Conclusions

- The perceptual side of perceptual category learning has drifted out of focus of theories of learning.
- These simulations demonstrate that psychological representations of sensory information, shaped by experience, can strongly influence learning.

References

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. *Psychological Review*, 105(3), 442–481.

Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York Academy of Sciences, 1224, 147–161.

Garner, W. R. (1974). The Processing of Information and Structure. Hillsdale, NJ: Erlbaum.

Roark, C. L., & Holt, L. L. (2019). Perceptual dimensions influence auditory category learning. *Attention, Perception, and Psychophysics*, *81*(4), 912–926. Scharinger, M., Henry, M. J., & Obleser, J. (2013). Prior experience with negative spectral correlations promotes information integration during auditory category learning. *Memory & Cognition*, *41*(5), 752–768.

Yi, H.-G., & Chandrasekaran, B. (2016). Auditory categories with separable decision boundaries are learned faster with full feedback than with minimal feedback. *The Journal of the Acoustical Society of America*, 140(2), 1332–1335.