Carnegie
Mellon
PSYCHOLOGY ${ }^{1915-20}$ University

A Neural Network Model of the Effect of Prior Experience with Regularities on Subsequent Category Learning

Casey L. Roark ${ }^{1,2}$, David C. Plaut ${ }^{1,2,3}$, and Lori L. Holt ${ }^{1,2,3}$
${ }^{1}$ Carnegie Mellon University Department of Psychology, ${ }^{2}$ Neuroscience Institute, ${ }^{3}$ Center for the Neural Basis of Cognition

Introduction

Category structures and neural mechanisms of learning

- A popular dual systems theory of category learning posits that the layout of categories in space drives neural mechanisms supporting learning.
Rule-Based (RB) categories are thought to require selective attention to individual stimulus dimensions and Information-Integration (II) require pre-decisional integration across multiple dimensions (Ashby et
al., 1998; Ashby \& Maddox, 2011; Yi \& Chandrasekaran, 2016) al., 1998; Ashby \& Maddox, 2011; Yi \& Chandrasekaran, 2016).
Assumption of independence of perceptual dimensions
- Underlying psychological representations of simple visual input dimensions are well understood, but many dimensions are not as independent (Garner, 1974; Roark \& Holt, 2019; Scharinger et al., 2013). and 'Il' category structures to understand how psychological representations influence learning.

Neural Network Methods

Network Architecture

- Representation training: autoencoder with 20 -unit sensory input, 10-unit hidden perceptual representation layer and 20 -unit autoencoder output layers (Figure 1). layer (2 units representing the two categories).
Representation Training
- Trained the network on five types of stimulus
distributions representing five possible hypothetical
relations between dimensions (Figure 2).

Category Learning

- Trained the network with feedback-using the learned hidden perceptual representations-on four types of category structures that require
different usage of the two dimensions (Figure 3):
- Information-Integration (II) Positive \& Negative

Rule-Based (RB) X Dimension and Y
Dimension
Figure 3. Category distributions for the category training phase.

Acknowledgements

This work was supported by a training grant from the National Institute General Medical Sciences to Casey L. Roark (T32GM081760). Note: CLR is now at the University of Pittsburgh, Department of Communication Science \& Disorders

Simulation Results

We assessed the impact of representation training (Independent, Positive, Negative, Y-Dim, X-Dim) on the four types of category learning structures (IIPos, IINeg, RBY, RBX). We trained and tested on all 200 stimuli from each category.

Accuracy was the percent of category exemplars for which the model met a target activation criterion of 0.5 (Figure 4).

Performance of the model on these category structures greatly depended on the nature of the pre-trained representations.

Existing perceptual representations can impact the outcomes of category learning, especially when the physical dimensions or experimenter-defined dimensions do not align with the
dimensions of representations.

Figure 1. Layout of network architectur

Conclusions

- The perceptual side of perceptual category learning has drifted out of focus of theories of learning These simulations demonstrate that psychological representations of sensory information, shaped by experience, can strongly influence learning.

References

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., \& Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological
Ashby, F. G.., \& Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York Academy of Sciences, 1224, 147-161.
Garner, W. R. (1974). The Processing of Information and Structure. Hillsdale, NJ: Erlbaum.
Roark, C. L., \& Holt, L. L. (2019). Perceptual dimensions influence auditory category learning. Attention, Perception, and Psychophysics, 81(4), 912-926 Scharinger, M.., Henry, M. J., \& Obleser, J. (2013). Prior experience with negative spectral correlations promotes information integration during auditory category learning. Memory \& Cognition, 41(5), 752-768.
Yi, H.-G., \& Chandrasekaran, B. (2016). Auditory categories with separable decision boundaries are learned faster with full feedback than with minimal feedback. The
Journal of the Acoustical Society of America, $140(2), 1332-1335$.

