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Abstract

Human category learning appears to be supported by dual learning systems. Previous research indicates the engagement of
distinct neural systems in learning categories that require selective attention to dimensions versus those that require integration
across dimensions. This evidence has largely come from studies of learning across perceptually separable visual dimensions, but
recent research has applied dual system models to understanding auditory and speech categorization. Since differential engage-
ment of the dual learning systems is closely related to selective attention to input dimensions, it may be important that acoustic
dimensions are quite often perceptually integral and difficult to attend to selectively. We investigated this issue across artificial
auditory categories defined by center frequency and modulation frequency acoustic dimensions. Learners demonstrated a bias to
integrate across the dimensions, rather than to selectively attend, and the bias specifically reflected a positive correlation between
the dimensions. Further, we found that the acoustic dimensions did not equivalently contribute to categorization decisions. These
results demonstrate the need to reconsider the assumption that the orthogonal input dimensions used in designing an experiment

are indeed orthogonal in perceptual space as there are important implications for category learning.
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Introduction

Learning to treat distinct perceptual experiences as function-
ally equivalent is vital for perception, action, language, and
thought. In the auditory domain, we can interpret a child’s
squeal as thrilled or terrified, judge a kettle to be boiling from
its gurgle, or understand diverse acoustic signals from differ-
ent talkers to each be the word “thanks.” Auditory categories,
whether speech or nonspeech, are most often complex and
defined across multiple acoustic dimensions. Often times,
these acoustic dimensions can be quite difficult to describe
verbally or to attend to selectively (Francis, Baldwin, &
Nusbaum, 2000; Grau & Kemler Nelson, 1988; Hillenbrand,
Getty, Clark, & Wheeler, 1995).

Recently, an influential theory of category learning that
was originally developed to explain visual category learning
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has been expanded into the auditory domain (Chandrasekaran,
Koslov, & Maddox, 2014; Chandrasekaran, Yi, & Maddox,
2014; Maddox, Molis, & Diehl, 2002). Many behavioral, neu-
ropsychological, and neuroimaging studies have provided
considerable evidence for the involvement of at least two dis-
tinct systems in visual category learning (Ashby & Maddox,
2005, 2011; Morrison, Reber, Bharani, & Paller, 2015; Smith
& Grossman, 2008; but see Newell, Dunn, & Kalish, 2011).
The Competition between Verbal and Implicit Systems
(COVIS) model specifically posits the involvement of an ex-
plicit, hypothesis-testing system and an implicit, procedural-
learning system (Ashby, Alfonso-Reese, Turken, & Waldron,
1998). The explicit, hypothesis-testing system is optimal for
learning so-called “rule-based” (RB) categories that can be
described with verbalizable rules. The kind of rules that are
most often used in the literature vary across a single input
dimension. However, rules can be based on multiple dimen-
sions or require a more complex rule than can be easily ver-
balized. In the current study, we investigate RB categories
based on one dimension, but acknowledge that rules can be
more complex. This explicit system is thought to involve top-
down processes and involves the prefrontal cortex as well as
the head of the caudate nucleus in the striatum (Ashby &
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Maddox, 2005). The implicit system learns via slower proce-
dural learning mechanisms and is optimal for learning
“information-integration” (II) categories that require integra-
tion across at least two input dimensions. The implicit system
is thought to implement these processes by involving the body
and tail of the caudate nucleus in the striatum as well as the
putamen (Ashby & Maddox, 2005).

The expansion of this model into the auditory modality
reveals some of the challenges in applying visual theories to
audition (Roark & Holt, 2018). One issue concerns input di-
mensions. Whereas most visual category-learning studies
have examined learning across simple input dimensions that
are easily described verbally, acoustic dimensions like modu-
lation frequency, or amplitude envelope, or the formant fre-
quencies of speech, may be difficult for untrained listeners to
describe (Francis et al., 2000; Hillenbrand et al., 1995).
Additionally, the visual input dimensions that have been typ-
ically used in research tend to be perceptually separable, in
that they are processed independently and are easy to attend to
selectively (Garner, 1974). In contrast, acoustic dimensions
are often integral; they are difficult to attend to selectively
(Garner, 1974). Pitch and loudness, for example, are perceived
integrally such that they are processed in a unitary fashion
(Grau & Kemler Nelson, 1988; Melara & Marks, 1990).
Although both auditory and visual dimensions can be separa-
ble or integral, a challenge in translating categorization
models developed in the visual modality to auditory and
speech category learning is that integral, interacting, and
difficult-to-verbalize acoustic dimensions may differ from
casily-verbalized categorization rules across separable dimen-
sions in the visual modality, such as the frequently used spatial
frequency and line orientation dimensions in a Gabor patch
(Maddox, Ashby, & Bohil, 2003), or line length and orienta-
tion (Maddox, Filoteo, Lauritzen, Connally, & Hejl, 2005).

Across both visual and auditory tasks, integral or
interacting dimensions have received much less attention than
dimensions that are separable and easy to verbalize. Research
on integral and separable dimensions demonstrates that di-
mensions are processed and used differently depending on
how they are perceived by participants (Garner, 1976, 1978;
Kemler & Smith, 1979). Whereas separable dimensions are
easier to attend to selectively and thus, may benefit rule-based
category learning, integral dimensions are more difficult to
attend to selectively and may be detrimental for rule-based
category learning. For instance, learning RB categories is
more difficult across the integral dimensions of saturation
and brightness than across separable dimensions like circle
size and the angle of a radian inside the circle (McKinley &
Nosofsky, 1996). However, other researchers found that par-
ticipants had higher categorization accuracy when learning
RB categories than II categories based on the integral dimen-
sions of saturation and brightness (Ell, Ashby, & Hutchinson,
2012). The investigation of IT and RB category learning across
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integral dimensions has been limited and more research is
needed to understand how the separable or integral nature of
dimensions impacts II or RB category learning.

One study on auditory category learning with the integral
dimensions of locations of spectral peaks in frequency space
demonstrated that participants better learned II categories that
required a negative integration in the stimulus space than a
positive integration (Scharinger, Henry, & Obleser, 2013).
However, these researchers did not compare this II category
learning with typical RB category learning. Thus, it is not yet
fully understood how auditory dimensions that are difficult to
attend to selectively impact category learning across different
category structures within the same acoustic space. It is nec-
essary to examine acoustic dimensions that are integral and
are difficult to verbalize to evaluate the ability of the COVIS
perspective to accommodate the complexities of acoustic di-
mensions. The goal of the current study was to examine how
categories within the same two-dimensional acoustic space
are learned when selective attention to the dimensions is dif-
ficult and the dimensions are not easy to verbalize. This would
allow us to investigate the applicability of the dual system
perspective with complex acoustic dimensions that are similar
to many complex acoustic dimensions that define auditory
categories in real-world contexts, such as speech.

For acoustic dimensions that interact or are difficult to at-
tend to selectively, we may expect that information-
integration categories will be learned better than rule-based
categories because the dimensions are difficult to separate
perceptually. Likewise, the ability to learn different categories
within this space may depend on the precise nature of the
relationship between the acoustic dimensions and how this
relates to internal perceptual representation of the dimensions,
which may differ from the acoustic dimensions.

To test these predictions, we trained participants on audito-
ry categories defined across two acoustic dimensions that past
research suggests are difficult to attend to selectively (Holt &
Lotto, 2006; Roark & Holt, 2018). We examined participants’
accuracy across training and their ability to generalize to novel
sounds. Additionally, we applied decision-bound computa-
tional models to assess participants’ strategy use in category
learning and their propensity to integrate or selectively attend
to the dimensions in category decisions at each stage of
learning.

Methods

We investigated two types of information-integration (II)
category-learning problems and two types of unidimensional
rule-based (RB) category-learning problems. Each of these
category-learning challenges was defined across the same
two acoustic input dimensions. Sampling this input space in
four different ways allowed us to avoid assumptions about
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which dimension, or combination of dimensions, would
most impact learning. To anticipate, we found that partic-
ipants tended to integrate across the dimensions, especially
in a way that reflected a positive correlation between the
dimensions.

Frequency-modulated nonspeech tones served as category
exemplars across each of the four category-learning chal-
lenges. We used nonspeech stimuli to control as much as pos-
sible for participants’ prior experience with this acoustic
space. By using nonspeech sounds, we were able to carefully
construct artificial categories and match different category ex-
emplar distributions as much as possible. The acoustic input
dimensions across which category exemplar distributions
were sampled were center, or carrier, frequency (CF) and
modulation frequency (MF). In a previous study of auditory
category learning using these same dimensions (Holt & Lotto,
20006), participants were able to adjust perceptual weighting
across the dimensions on the basis of what was required for
the task. However, participants tended to place some weight
on each dimension, even when the category-learning task re-
quired selective attention to a single dimension. In other
words, selective attention to these acoustic dimensions is dif-
ficult, even when it is required by the task. We chose this
particular pair of dimensions because perceptual reliance on
the dimensions is malleable and, at the same time, the percep-
tual representation of these dimensions may not be entirely
separable.

Participants

A total of 81 adults (38 females, 43 males) aged 1824 years
and affiliated with Carnegie Mellon University participated
for partial course credit. Participants were randomly assigned
to one of four conditions defined by the sampling of category
exemplars in the acoustic input space. Three participants were
excluded due to equipment error, leaving 78 subjects in the
final analysis. There were 20 participants in the rule-based-CF
(RBcF) condition, 19 in the rule-based-MF (RBy) condition,
19 in the information-integration positive slope (Ipygitive), and
20 in the information-integration negative slope (Inegative)
condition. All participants reported normal hearing.

Stimuli

Sound exemplars The two-dimensional acoustic space from
which stimuli were sampled was defined by CF and MF. As in
Holt and Lotto (2006), each stimulus was created from a sine
wave tone with a particular CF modulated with a depth of
100 Hz at the corresponding MF. For example, if the CF
was 760 Hz and the MF was 203 Hz, the tone was modu-
lated from 710 to 810 Hz at a rate of 203 Hz. Each stimulus
was 300 ms long. Exemplars were synthesized in

MATLAB (Mathworks, Natick, MA, USA) and matched
for RMS energy.

Category distributions Two individual category distributions
were created to define the category-learning challenge for
each of the four conditions (Fig. 1). The information-
integration conditions sampled acoustic space such that opti-
mal performance would require integration across the two
dimensions. The Ipgsitive and Ilyegative conditions are mirror
images, differing only in the nature of the correlation between
CF, shown on the x-axis in Fig. 1, and MF, shown on the y-
axis in Fig. 1. In the case of [lpygjiive, higher CF values were
associated with higher MF values and, for Ilycgative higher CF
values were associated with lower MF values. The rule-based
categories sampled acoustic space such that they could be
optimally differentiated by selectively attending to one of the
two stimulus dimensions that define the categories. The RBcr
condition requires selective attention to the CF dimension.
The RByr condition requires selective attention to the MF
dimension.

Each category was defined by 100 distinct stimuli sampled
from a bivariate normal distribution across the two input di-
mensions (Table 1). Half of the stimuli from each category
were used during training and the other half were reserved
for the generalization test. The exemplars defined as training
and test were randomly selected, with consistent sampling
across participants.

Procedure

Separate groups of listeners participated in each condition.
The task was identical across conditions; only the sampling
of stimulus distributions varied (Fig. 1). Participants were not
informed about the nature of the dimensions.

During the training phase, participants completed four
blocks of training (96 trials/block; 384 total trials), with a brief
break in quiet separating blocks. The trial structure was largely
the same across training and generalization phases of the ex-
periment. On each trial, participants heard a single sound ex-
emplar (300 ms) randomly selected from one of the two cat-
egories, repeated five times (50-ms silent inter-stimulus inter-
val). Two boxes on the screen indicated response options cor-
responding to the “u” and “i” keys on a standard keyboard.
Participants indicated which of two equally likely categories
the sound belonged to by pressing a response button. A red X
indicating the correct category decision appeared in one of the
boxes 500 ms after response. Participants were instructed to
use this feedback to inform future categorization decisions. A
1-s inter-trial interval followed the feedback.

After completing the training phase, participants com-
pleted the generalization test (100 trials). Participants were
instructed that they would now be tested on what they
learned during training and that there would no longer be
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Fig. 1 Stimulus distributions for the four conditions in this study. The black line represents the optimal decision boundary that separates the two

categories

feedback. Instead of a red X indicating the correct category
decision, question marks appeared inside each of the two
boxes on the screen. With the exception of the feedback,
the trial structure was identical to the training phase.
During the generalization test phase, participants encoun-
tered category exemplars (50/category, 100 total) that they
had not encountered in training. Thus, the generalization

Table 1 Category distribution information

Information-integration positive

Category Mean (CF, MF) Variance (CF, MF)  Covariance
Category A (818.3, 225.8) (6328,2278.2) 2260.5
Category B (913.8, 168.3) (6328, 2278.2) 2969.9
Information-integration negative

Category Mean (CF, MF) Variance (CF, MF)  Covariance
Category A (913.8,225.8) (6328, 2278.2) -2260.5
Category B (818.3, 168.3) (6328, 2278.2) -2969.9
Rule-based modulation frequency

Category Mean (CF, MF) Variance (CF, MF)  Covariance
Category A (866, 156.5) (6770, 796.7) 53.4
Category B (866, 237.5) (6770, 796.7) -32.3
Rule-based center frequency

Category Mean (CF, MF) Variance (CF, MF)  Covariance
Category A 914, 197) (1020.2, 3281.8) -214.5
Category B (816, 197) (1020.2, 3281.8) -129.1

CF center or carrier frequency, MF modulation frequency

@ Springer

phase measured the ability to generalize category learning
to novel exemplars — a hallmark of categorization.

The task was run in a sound-attenuated booth using E-
Prime software (Psychology Software Tools, Inc.,
Sharpsburg, PA, USA), with stimuli presented diotically over
Beyer DT-150 headphones at a comfortable listening level.

Results

The analyses focused on accuracy of categorization during
training and as assessed in the generalization test.
Additionally, we fit a series of decision-bound models to cat-
egorization responses across training in order to examine re-
sponse strategies across conditions (for more detailed infor-
mation about model applications see: Ashby & Maddox,
1993; Maddox & Ashby, 1993; Maddox & Chandrasekaran,
2014).

Behavioral results

Normalization Although we attempted to equate the stimulus
distributions for RB and II for distance between the means and
variance, there remained small differences in the overall over-
lap of the two categories across conditions. An ideal observer
would be able to achieve 96% accuracy in the II conditions,
91% in the RByr condition, and 92% in the RBy condition.
Thus, we computed a normalized accuracy score to account
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for potential cross-condition differences (Normalized
Accuracy = Raw Accuracy / Optimal Accuracy).' Below, we
report only the normalized accuracies to give a more conser-
vative measure of the differences among conditions.

Training accuracy We measured categorization response accu-
racy across the four blocks of training to determine the effect
of stimulus distribution condition on training performance
(Fig. 2). A mixed-model ANOVA with block as a within-
subjects factor and condition as a between-subjects factor re-
vealed a significant main effect of block (#(3,222) =8.53,p <
.001, npz =.10), a significant main effect of condition (¥(3,74)
=449, p < .001, np2 = .65), and no interaction (F(9,222) =
0.96, p = .47, np2 =.038). We outline the results of the anal-
yses for block and condition separately below.

Learning across blocks. Bonferroni-corrected post hoc
comparisons indicated that the majority of learning for
all conditions occurred across the first two blocks. All
blocks had significantly higher accuracy than Block 1
(Block 1 vs. Block 2 p = .049, d = 0.30, Block 1 vs.
Block 3 p = .004, d = 0.40, Block 1 vs. Block 4 p =
.001, d =0.45), but Blocks 2, 3, and 4 did not differ from
one another (all ps > .05, ds < .20). The majority of
learning gains occurred within the first two blocks for
all conditions. Learning occurred early and differences
among conditions persisted throughout the experiment.
Differences among conditions. Bonferroni-corrected
post hoc comparisons revealed that participants learning
the Hpygiiive Categories performed better than participants
learning Ilnegative Categories across training (p < .001, d =
4.19). Categorization accuracy was also higher for partic-
ipants in the RByr condition relative to the RBf condi-
tion (p < .001, d = 1.58). Further, the IIpyi;ive and RByr
categories did not differ in accuracy over the course of
training (p > .99, d = 0.37) and neither did the RBcr and
lNegative @ = .06, d = 1.06). Participants in the Ipygitive
condition had significantly better performance than RB¢r
in all four training blocks (p < .001, d = 2.25). However,
IINegative had significantly lower accuracy than RByr (p <
.001, d = 2.83). In our data, training accuracy cannot be
easily explained by classifying the category-learning
challenge as a rule-based or information-integration cat-
egory distribution. Instead, we found substantial differ-
ences between the two II conditions and differences be-
tween the two RB conditions, which we examine in great-
er detail below.

! Compared to the non-normalized data, the only differences were that with
the normalized accuracy RBcr was above chance in the first block (#(19) =
2.788, p = .012) and there were no statistically significant differences between
Hpositive and RByg in the training blocks (whereas with the non-normalized
scores, Ilpysiive and RByr were significantly different in the first and second
training blocks).

Block by Block Accuracy by Condition
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Condition [ ii-Positive © RBMF 8| RBCF e Ii-Negative

Fig. 2 Block-by-block average normalized accuracy, normalized
according to ideal observer accuracy, for all conditions. Ribbon error
bars reflect standard error of the mean. Dashed line represents chance
accuracy (50%)

We found very striking differences in learning across the
two II conditions, which had identical category distributions,
but required integration across the dimensions in opposite
directions. In the first block, average accuracy of both
positive and Ilyegaive conditions was above chance (Ilpygigiye:
78.5%, t(18) = 12.4, p < .001, d = 2.85; lNcgative: 34.7%, 1(19)
=3.75,p=.001, d = 0.84). However, recall that participants in
the Ilpesive condition had significantly higher accuracy than
participants in the Ilnegative condition throughout training (p <
.001, d = 4.19). By the end of training in Block 4, average
accuracy for each condition was still above chance (Ilpggjtive:
1(18) = 14.0, p < .001, d = 3.22; lNegarive: #(19) = 423, p <
.001, d = 0.95), but participants in the Ipive condition
reached 82.5% accuracy whereas participants in the Ilxegative
condition achieved only 56.3% correct. Across training, we
found much better performance for participants learning the 11
distribution that required an integration along the positive axis
compared to participants learning the II distribution that re-
quired an integration along the negative axis.

We also found significant differences in performance
across the two RB conditions. The primary difference between
these two distributions is the dimension that distinguishes the
categories. While both RBcr and RByr performed above
chance even in the first block (RBcg: 57.3%, #(19) = 2.79, p
=.012, d = 0.62; RByg: 73.5%, #(18) = 8.36, p < .001, d =
1.92), the RByr condition outperformed the RBr condition
(p <.001, d = 1.58). This pattern remained throughout train-
ing, and by Block 4, participants in the RBy;r condition
reached 80.4% accuracy and participants in the RBcr condi-
tion reached only 64.9% accuracy. Block 4 accuracy remained
significantly greater than chance for both the RB¢p (#(19) =
.590, p <.001, d = 1.32) and RByr conditions (#18) = 10.3, p
<.001, d =2.36). Whereas participants in both RB conditions
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were performing above chance throughout training, those
learning categories that required a distinction based on MF
outperformed those learning categories that required a distinc-
tion based on CF throughout training.

Generalization test accuracy After training, participants en-
gaged in a generalization test that involved categorizing novel
sound exemplars drawn from the distributions experienced in
training without feedback (Fig. 3). Participants in all four con-
ditions exhibited generalization performance greater than
chance (50%) accuracy, indicating category learning
(IUpositive #(18) = 16.5, p < .001, d = 3.80; llnegative #(19) =
3.38, p =.003, d = 0.76; RBcr #(19) = 6.72, p < .001, d =
1.50; RByr #(18) = 10.8, p < .001, d = 2.47). Generalization
test accuracy varied across conditions (F(3,74) = 27.20, p <
.001, ‘l]p2 = .52). Participants in the Ilp.;4ve condition accu-
rately categorized novel sound exemplars 81.4% on average;
participants in the Ilyegative condition reached 55.4%, partici-
pants in the RByr condition reached 80.2%, and participants
the RBcr condition reached 68.8% correct. According to
Bonferroni-corrected post hoc comparisons, the overall pat-
tern of generalization mirrors the patterns of learning during
training: pgsiive generalization accuracy was greater than
INegaiive (P < 001, d = 3.38) and RByr was greater than
RBcr (p =.006, d = 0.93). [Ipsisive and RByr had statistically
equivalent performance (p = .74, d = 0.11), but Ilxegative Was
significantly worse than RByr (p < .001, d = 2.48). RBcr
generalization performance was significantly worse than
Hpesitive (0 = .002, d = 1.19). In general, generalization perfor-
mance patterned with relative performance across conditions
in training. The only difference in the overall pattern of results

compared to training is that in the generalization test, partici-
pants in the RB¢p condition performed significantly better
than participants in the Ilyegasive condition (p = .001, d = 1.32).

Computational modeling

Rationale Categorization accuracy across training and in the
generalization test provides a relatively coarse measure of per-
formance that does not reveal why differences between the 11
conditions and between the RB conditions persist. To obtain a
better understanding of what participants learned over the
course of this experiment, we applied and fit decision-bound
models to each block of each participant’s data (Ashby, 1992a;
Ashby & Maddox, 1992, 1993; Maddox & Ashby, 1993).
Decision-bound models are derived from General
Recognition Theory (GRT, Ashby & Townsend, 1986), a mul-
tivariate application of signal detection theory (e.g., Green &
Swets, 1966). These models have been applied extensively in
the dual-systems literature with both auditory and visual cat-
egories (e.g., Ashby & Maddox, 2005, 2011; Chandrasekaran,
Yi, et al., 2014; Maddox, Chandrasekaran, Smayda, & Yi,
2013; Scharinger, Henry, & Obleser, 2013).We provide a brief
description of the models applied to the data; more specific
details of these models, including the proposed neural instan-
tiation of the models, can be found elsewhere (Ashby &
Maddox, 1993; Ashby, Paul, & Maddox, 2011; Maddox &
Ashby, 1993; Maddox & Chandrasekaran, 2014).

Model details Each model assumes participants create deci-
sion boundaries to separate the stimuli into two categories.
Our model-based approach involves applying four classes

Generalization Test Accuracy by Condition
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0.75 4 °

0.00 4

T T
|I-Positive II-Negative

Fig.3 Average generalization test accuracy, normalized based on optimal
accuracy for each condition. The dashed line represents chance accuracy
(50%). Error bars reflect standard error of the mean around the black dot,
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of models, with multiple instantiations possible within a
class. We fit a unidimensional model based on decision
bounds across the CF dimension (UDcg), a unidimensional
model based on decision bounds across the MF dimension
(UDwp), an integration model (GLC) with decision bounds
based on both CF and MF dimensions, and a random re-
sponder model (RR).

Unidimensional rule-based models. Two unidimensional
models instantiate a unidimensional decisional bound
that is optimal for either the RBc or RByr conditions.
The unidimensional model has two free parameters — the
decision boundary (vertical (90°) for UD¢f and horizon-
tal (0°) for UDyr) and the variance of noise (both per-
ceptual and criterial). An example of a unidimensional
rule based on CF might be: “If the tone’s CF is greater
than 866 Hz, it belongs to category A; if it less than 866
Hz, it belongs to category B.” Optimal performance in
the RB¢r requires a UDcg decision bound whereas RByr
requires a UDyr decision bound.
Information-integration model. The general linear classi-
fier (GLC) also assumes a linear decision boundary but,
in contrast to the unidimensional rule-based models, it
requires linear integration of the CF and MF dimensions
and is therefore optimal for the Ilpogitiyve and Iyegative CON-
ditions. For the Ilpyive condition, the optimal decision
boundary has a positive slope (45°), whereas for the
IINegative condition, the optimal decision boundary has a
negative slope (—45°). The specific weight a listener
places on one dimension can vary, even when fit by the
same GLC model. Thus, we also examine the angle of the
decision boundaries in the CFXMF input space as an es-
timate of the perceptual weight of CF versus MF in cat-
egorization decisions. The model has three free parame-
ters: the slope and intercept of the decision boundary and
the variance of noise (perceptual and criterial).

Random responder model. The random responder model
assumes that the participant guesses on each trial.

Model fitting For each of the four experimental conditions, we
fit the models separately to each participant’s data from each
of the four training blocks and the generalization test. The
model parameters were estimated using a maximum likeli-
hood procedure (Ashby, 1992b; Wickens, 1982) and the
goodness-of-fit statistic was Akaike’s information criterion
(AIC) = 2r — 2InL where 7 is the number of free parameters
and L is the likelihood of the model given the data (Akaike,
1974). The AIC allows comparison of model fits because it
penalizes a model for extra free parameters such that the
smaller the AIC, the closer the model is to the “true” model,
regardless of the number of free parameters. To find the best-
fit model, we computed AIC values for each model and chose

the model associated with the smallest AIC value. We sepa-
rately replicated the model fit analyses using the Bayesian
information criterion (BIC) as the model selection criterion,
which gives steeper penalties for extra free parameters. The
qualitative pattern of results was not different with the AIC
and BIC model fits and so we focus report results based on
AIC selection criterion.

Modeling results To better understand the pattern of learn-
ing across the different conditions, we examined the pro-
portion of participants’ best fit by each computational
model (Fig. 4) and a more detailed measure of the bound-
aries participants drew between the categories in the gen-
eralization test (Figs. 5 and 6).
Proportion of participants using each strategy.
Figure 4 shows the proportion of participants whose
categorization decisions were best fit by the
information-integration (GLC), UDcg, UDyg, and
RR model, separately for each condition. Note that
none of the participants in our study were best fit by
the RR model in any block. We found that the strategy
participants used in the first block was not independent
from condition (X°(6, N = 78) = 17.4, p = .008). We
also examined proportions of participants using differ-
ent strategies in the generalization test block and found
the relation between strategy and condition was signif-
icant (X*(6, N = 78) = 17.4, p = .008).

A majority of participants in the pggjive (78.9%) and
RB\r (78.9%) conditions were best fit by the integration
strategy in the first block. The tendency to integrate across
the dimensions for the Ilpggive and RByp conditions
emerged early on and persisted throughout training. In
Block 4, 100% of participants in the IIpg;ive condition
and 68.4% of participants in the RByr condition were best
fit by the integration strategy. Integration was a successful
strategy for these participants, as learning was most robust
in these conditions. It is of note that this was a successful
strategy for RByr participants, even though integration
was a suboptimal strategy for this RB category type.
Even though many participants in the RBy;r condition used
an integration strategy rather than an optimal unidimen-
sional strategy, their accuracy was still quite high.

In contrast, more participants in the RBcr condition
were best fit by one of the unidimensional (70%) strate-
gies, compared to the integration (30%) strategies, in the
first block (Bonferroni-corrected comparison, p < .05).
However, many participants were fit by the suboptimal
UDyr strategy, indicating reliance on the MF dimension,
which is poorly diagnostic of category membership in this
condition. This helps to account for the poor categorization
accuracy observed in training and generalization in the
RBcr condition.
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Proportion of Participants fit by Each Strategy Across Blocks
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Fig. 4 Proportion of participants fit by each modeling strategy across all four training blocks and the generalization test. None of the participants were
best fit by the Random Responder model, so it is not included in the graph

We also found that, in the first block across the Ilyegative integration strategy (40%) (Bonferroni-corrected comparison,
condition, more participants’ categorization responses were fit ~ p < .05). Over the course of learning, participants in this
by a unidimensional strategy (60%) compared to an IINegative condition were most often fit by a unidimensional

Information-Integration Information-Integration
Positive Negative

Rule-Based Rule-Based
Center Ftl'e uency Modulation Frequenc

f”
A

Fig. 5 Individual decision boundaries for each participant in the The x-axis represents the Center Frequency dimension, and the y-axis
generalization test (after all training blocks). The optimal decision represents the Modulation Frequency dimension
boundary for each category is shown as the red dotted line on each plot.

@ Springer



Atten Percept Psychophys

Difference in Decision Bound Angles Relative to Optimal

1001

50 1

Absolute Value of Optimal Angle Minus Actual Decision Bound Angle

|I-Positive/45 degrees

Fig. 6 Box plots of absolute value difference in participants’ best fit
decision-bound angles relative to the optimal decision boundary. The
optimal decision-boundary angle is listed for each condition next to its

strategy, rather than the optimal integration strategy. This is
in sharp contrast to much greater adherence to the optimal
integration strategy among participants in the Ilpgg;iiyve CON-
dition, for which the only difference from the Ilnegative
condition was the angle of the decision bound through
MFxCEF input space.

Decision boundaries in the generalization test.
Examining the proportion of participants in each condi-
tion best fit by each of the models gives us a general sense
of participants’ category decision strategies in learning
and generalization. However, only examining the propor-
tion of participants using a given strategy does not present
a full picture because many decision boundaries are pos-
sible within each class. Depending on how well a partic-
ipant’s decision boundary matches the optimal decision
boundary, even within a class, there can be different ef-
fects on categorization accuracy. Figure 5 shows the in-
dividual best-fit decision boundaries for each participant

II-Negative/~45 degrees

RBMF/0 degrees RBCF/90 degrees

Condition

name and is represented by the dashed line at 0. Each dot represents an
individual participant value

according to condition in the generalization test. The
dashed line in each panel represents the optimal decision
boundary.

By the generalization test phase, many participants in each
condition were best fit by the integration model. This consti-
tuted the majority of participants for the RByr and Ipgsigive
conditions (68% and 95%, respectively), and also around 40%
of the participants in the RBcf and 45% of participants in the
IINegative conditions. Visual inspection of the individual deci-
sion boundaries in Fig. 5 demonstrates that when participants
were best fit by an integration strategy, it was along the pos-
itive axis, with the exception of a single participant in the
IINegative condition. In the generalization test, there is a bias
to integrate along these two dimensions in the positive direc-
tion, rather than selectively attending to either dimension
(even when that is optimal for category learning) or integrat-
ing in the negative direction (even when that is optimal for
category learning).
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There are especially stark differences between the two II
conditions. These two category types differ only in the direc-
tion of integration along the dimensions that is required by the
category boundary. Nearly every participant in the Ilpygitive
condition used a nearly optimal decision boundary. In con-
trast, participants in the IIxegaive condition used a mixture of
strategies in the generalization test. Among those using the
integration strategy in the Ilnegasive condition, all but one par-
ticipant used a decision boundary with a positive slope be-
tween CF and MF, rather than the optimal negative slope.
Thus, even participants best fit by the so-called optimal strat-
egy (as in Fig. 4) were not optimally integrating across the two
dimensions. This was especially true in the Ilxegative condition.

To better quantify the relative weight that participants
placed on each dimension in the different conditions during
the generalization test, we also computed the angle of the
decision boundary for each participant. We compared the in-
dividual angle values to the optimal angle of the decision
boundary for each of the conditions (Ilpositive = 45°, Inegative
=—45° RByr = 0° RBcr =90°). Figure 6 shows the absolute
values of these differences for each participant in each condi-
tion. The closer the participant’s decision-boundary angle is to
the optimal decision-boundary angle, the more they were op-
timally attending to the dimensions appropriate for the cate-
gories they were learning. This visualization helps to better
understand how participants using the integration strategy dif-
ferently weighted the two input dimensions in categorization
decisions and provides more fine-grained information to
quantify how close to optimal participants’ strategies were in
the generalization test.

We found that the vast majority of participants in the
pysitive condition had a decision boundary with an angle very
close to the optimal decision-boundary angle (median differ-
ence from optimal is 11.0°). In contrast, participants in the
IINegative condition were very far from optimal (median differ-
ence from optimal is 91.9°). Thus, it may not be surprising that
participants in the Ilnegaive condition performed much worse
than participants in the Ilpgjive condition. Participants in the
IINegative condition were less able to find the optimal integra-
tion strategy and even when they were best fit by the integra-
tion model, they were applying a decision boundary along the
positive slope, opposite to what is optimal for the category
distributions. Thus, integration alone is not enough for suc-
cessful categorization and generalization — participants must
integrate optimally.

In examining the differences between the two RB condi-
tions, approximately equal numbers of participants in the
RByr and RBcr conditions had decision-boundary angles
close to the optimal decision-boundary angle (Fig. 6). The
median absolute difference from the optimal angle for RBys
was 31.0° and for RB¢g was 25.0°. Just looking at the differ-
ence between these decision-boundary angles and what is op-
timal, it is not clear why RBy participants would outperform
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RBcr by such a large margin. However, it is clear from
looking at the actual decision boundaries in Fig. 5 that the
decision boundaries for participants using the optimal strategy
(unidimensional CF for RB¢g and unidimensional MF for
RB\r) are not fully overlapping with the optimal decision
boundary. Thus, it is not the angle that is suboptimal for the
RBr participants, but the placement of the decision boundary
on the x-axis. Participants in the RBcf condition were unable
to place the decision boundary at the optimal position along
the CF dimension, even if they were reliant on CF for their
decision. So even though many RByr participants integrated
across dimensions and had a decision-boundary angle that
was far from optimal, it resulted in better category learning
than suboptimally placed unidimensional boundaries.

Across all participants, there was a significant correlation
between the absolute difference in the decision-boundary an-
gle relative to optimal and the generalization test accuracy (r =
—0.62, #(76) = —6.97, p < .0001). However, in examining this
correlation within each condition, the correlation was only
significant for the Ilpygiive (¥ = —0.64, t(17) = =3.42, p
=0.003) and RByr conditions (»r = —0.88, #(17) = —7.47, p <
.0001). There was no significant correlation for the Inegative (*
= —0.05, #«(18) = —0.21, p = 0.83) or RB(f conditions (» =
—0.16, «(18) = —=0.70, p = 0.49). Across the entire group of
participants, decision boundaries closer to optimal were asso-
ciated with higher categorization accuracy.

Discussion

We examined learning outcomes and participant strategies for
auditory categories defined by dimensions that are difficult to
attend to selectively (Holt & Lotto, 2006). The results empha-
size the importance of considering not just the physical acous-
tic dimensions that define a categorization challenge, but also
the way that acoustic dimensions are represented perceptually.
The nature of dimensions’ perceptual representation greatly
affects how categories are learned. Dual systems accounts,
developed for visual categorization, have emphasized the im-
portance of the sampling of category exemplars from a stim-
ulus space on category-learning outcomes. Our results dem-
onstrate that the dimensions defining a stimulus space also
play a fundamental role. We cannot assume that a particular
sampling from a physical stimulus space maps linearly to a
psychological or perceptual space. Few models of category
learning address how prior experience shapes representations
and how existing representations constrain category learning
(but see models of infant and second-language speech catego-
ry learning: Best, McRoberts, & Sithole, 1988; Kuhl, 1991).
Instead, it is common to assume that participants will be able
to conquer each learning challenge placed in front of them,
shifting attentional weights or decision boundaries flexibly
based on the requirements of the task. In the current study,
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even when sampling was equated across the Ilnegative and
Hpysitive conditions, participants demonstrated strikingly dif-
ferent learning outcomes and across the two RB conditions;
participants were not easily able to disengage from the irrele-
vant dimension.

Integration strategies persisted even when they were
suboptimal

We found that many participants integrated across the CF and
MF dimensions even early in training and even when integra-
tion was suboptimal. Prior studies using separable dimensions
have reported that participants demonstrate a tendency to se-
lectively attend to the dimensions (e.g., Ashby et al., 1999;
Huang-Pollock, Maddox, & Karalunas, 2011; Smith, Beran,
Crossley, Boomer, & Ashby, 2010). In the current study, inte-
gration across the input dimensions could be described as the
“default” strategy for participants. For the acoustic dimen-
sions of the present study, integration emerged early on and
produced the best outcomes in terms of categorization accu-
racy even when integration was not the “optimal” strategy
predicted by the categorization challenge defined by the sam-
pling of exemplars across the input dimensions.

Strikingly, the bias toward integration was present even for
the two RB conditions, for which unidimensional strategies
were optimal based on the sampling of stimuli from the input
space. The pattern of strategies revealed by computational
modeling indicates that participants in the RB conditions did
not easily disengage from the irrelevant dimension, even when
training feedback did not align with this strategy. This pattern
is not typically observed in the existing research on the dual-
systems theory, for which dimensions defining RB categories
have tended to be separable (Ashby & Maddox, 1990, 2005,
2011; Chandrasekaran, Koslov, et al., 2014; Goudbeek,
Cutler, & Smits, 2008; Goudbeek, Swingley, & Smits, 2009;
Maddox & Ashby, 2004).

Because many auditory dimensions may be integral and
difficult to selectively attend to, it is important to examine
category learning where it is difficult or impossible to engage
with only the relevant dimension during category learning.
Many models of category learning, including the COVIS
model, posit that participants shift their attention weights or
selectively attend to individual input dimensions during learn-
ing (Ashby et al., 1998; Nosofsky, 1986). In the current study,
many participants in the two RB conditions were able to cat-
egorize the exemplars reasonably well even without selective-
ly attending to the dimensions. The ability to selectively attend
to the dimensions was not required for above-chance perfor-
mance in this task.

There are few studies comparing two RB category-learning
challenges that differ only on the dimension to which selective
attention is required (for two exceptions with visual categories
see Ell et al., 2012 and Maddox & Dodd, 2003). Instead,

experimenters typically choose one of the dimensions and
use it as the single representative RB category-learning chal-
lenge. We investigated two possible RB categories to avoid
the assumption that participants may be equally likely to learn
RB categories based on either dimension.

This proved to be informative. Learners in the RByr con-
dition outperformed learners in the RB¢g condition through-
out the entire experiment. We did not expect that the RBcr and
RB\r conditions would demonstrate such strikingly different
performance. In Holt and Lotto (2006), participants placed
more perceptual weight on the CF dimension when either
CF or MF alone could distinguish the categories. However,
even when participants placed more weight on CF, they con-
tinued to rely upon both dimensions, suggesting it may be
difficult to selectively attend to these dimensions.

Several other studies have found differences in the reliance
upon various input dimensions during category learning.
Although these studies differ in their details, they collectively
demonstrate that some input dimensions are more likely to be
relied upon in category learning than others (Ell, Ashby, &
Hutchinson, 2012; Goudbeek et al., 2008, 2009; Holt & Lotto,
2006; Maddox & Dodd, 2003; Scharinger et al., 2013). In the
current experiment, participants did not demonstrate a bias for
one dimension over the other. Instead, participants demon-
strated a bias to infegrate across the two dimensions.

In the current experiment, participants were better able
to learn the RByr categories than the RBcr categories.
Participants in the RByr condition used integration strate-
gies often and performed well, even though these strategies
are suboptimal. Participants in the RBcr conditions used
the optimal selective attention more frequently but applied
these strategies suboptimally. Thus, even though RByr
participants were technically using suboptimal decision
strategies, the actual decision boundaries they were placing
were closer to optimal than the optimal strategy decision
boundaries that RB¢r participants were placing. This find-
ing is counterintuitive, but consistent in that it further dem-
onstrates how difficult it is to optimally selectively attend
to these acoustic dimensions.

A unique feature of the current study is that we examined
learning of distinct category structures within the same acous-
tic space defined by dimensions that are difficult to attend to
selectively. In a study investigating visual category learning
with the integral dimensions of saturation and brightness, re-
searchers have demonstrated integration across the integral
dimensions, but generally RB categorization performance
was better than II performance (Ell et al., 2012). In a study
of auditory category learning with perceptually integral di-
mensions that are closely related to pitch and timbre, re-
searchers found that participants strongly relied upon unidi-
mensional strategies compared to integration strategies
(Scharinger et al., 2013). In contrast, in the current experi-
ment, we found that participants were more often integrating
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across the dimensions and there was no clear benefit for II
categories over RB categories.

The present results highlight that it is important to consider
the role of perceptual dimensions in category learning.
Whereas separable, relatively easy to verbalize acoustic di-
mensions, such as pitch and duration, may behave in a manner
aligned with the COVIS model (Chandrasekaran, Koslov,
et al., 2014; Goudbeek et al., 2008, 2009), this may not be
the case for integral, interacting, or difficult to verbalize acous-
tic dimensions. Nonetheless, it is important to acknowledge
that the current experiment investigated two specific acoustic
dimensions; the observed pattern of results may not be true for
all acoustic dimensions. Especially in light of the conflict be-
tween the current results and those of Scharinger et al. (2013),
other interacting and integral acoustic dimensions should be
examined. It is important to investigate learning categories
defined by complex and interacting acoustic dimensions be-
cause many acoustic dimensions, including those defining
speech categories, interact (Francis et al., 2000; Grau &
Kemler Nelson, 1988; Hillenbrand et al., 1995). The present
results highlight the need for caution in assuming the psycho-
logical relationship among perceptual dimensions involved in
category learning.

There was a bias to integrate across the dimensions
in a way that reflected a positive correlation
between the dimensions

Not only did the participants demonstrate a propensity to in-
tegrate across the dimensions in the current study, they did so
in a manner that reflected a positive correlation between CF
and MF. This propensity to integrate along the positive corre-
lation axis had a particularly potent impact on the two II con-
ditions. Whereas category learning was robust in the Ipyggive
condition, it hovered near chance in the Ilnegative condition.
This is notable inasmuch as the statistical sampling of the
acoustic input space was identical, except that the category
boundary was rotated 90°.

The nature of this interaction may stem from the physical
dimensions and participants’ prior experience. Although we
used nonspeech stimuli to attempt to better control the acous-
tic environment and minimize participants’ prior experience
with category exemplars, it still could be the case that existing
representations for these acoustic dimensions, and their rela-
tionship, influenced category learning. Listeners are sensitive
to statistical correlations among acoustic dimensions (Holt &
Lotto, 2006; Liu & Holt, 2015; McMurray, Aslin, & Toscano,
2009; Stilp, Rogers, & Kluender, 2010; Wade & Holt, 2005).
It is possible that the positive integration bias we found may
be due to a natural correlation between these two physical
dimensions. For instance, it might be the case that due to the
physics of sound, when a sound has a higher CF, more mod-
ulations can be added. This interrelation between the
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dimensions may lead to a natural positive correlation between
CF and MF and may have contributed to the bias to integrate
along the positive axis that we observed here. The current
study was not designed to address this particular relationship
between the two dimensions, but our results do point to the
need to clarify potentially pre-existing relationships between
perceptual dimensions and how they might influence learning.

Additionally, while our nomenclature of positive and neg-
ative integration refers to the direction of the decision bound-
ary, the perceptual distinction that is made between the cate-
gories is orthogonal to the decision boundary. For the [py;tive
category, the boundary has a positive slope, but the two cate-
gories require distinctions between categories across this
boundary, which would be along the negative axis. This is
an important distinction to make to understand how the per-
ceptual information is used and processed by learners. This
also further highlights the importance of considering the un-
derlying perceptual representation of the categories being
learned in addition to the decision boundary in the perceptual
space.

The propensity to integrate along the positive axis observed
in the current study specifically benefitted learning of Ipg;tive
categories and impaired learning of Iyegaive Categories. Very
few studies have specifically compared learning of two differ-
ent information-integration conditions (but see Ell et al., 2012;
Scharinger et al., 2013). Scharinger et al. (2013) found that
participants were better able to learn II categories with a neg-
ative correlation than a positive correlation. They argued that
performance in that condition was better because the neg-
ative correlation better matched the natural correlation
found in speech. The dimensions in the current study are
not directly comparable to speech dimensions. However,
our results support Scharinger et al.’s (2013) conclusion
that prior experience with similar or identical dimensions
influences category-learning behavior. It could be the case
that either prior experience or general familiarity with
these or similar acoustic dimensions could be driving per-
ceptual processing and learning.

In contrast, Ell et al. (2012) found that for the integral
visual dimensions of saturation and brightness, the positive
and negative axis I categories were learned equally well.
They did not observe a difference in their two II conditions
because participants demonstrated a bias toward strategies that
required selective attention to brightness, while ignoring
saturation. Because there was no strong tendency to
integrate across dimensions, Ell et al. (2012) did not find dif-
ferences in their two II conditions.

Many acoustic dimensions demonstrate similar interacting
relationships, such as pitch and loudness and pitch and timbre
(Melara & Marks, 1990; Neuhoft, 2004). Thus, investigating
how categories defined by complex and interacting dimen-
sions are learned is an important and understudied area of
category learning. Instead, typical experiments — for the sake
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of simplicity — define their categories based on simple, sepa-
rable dimensions. Use of these simple, separable dimensions
may lead to better experimental control, but it comes at a cost
to generalizability to real-world dimensions, which are often
more complicated.

Additionally, it is possible that individual differences in
musical expertise, language experience, or hearing loss may
affect how participants interact with acoustic information dur-
ing learning. Because none of these factors were directly tied
to our main question of interest, we did not collect these mea-
sures from participants and are thus unable to evaluate wheth-
er and which individual differences had any effect on perfor-
mance. Future studies may be directed at understanding the
factors of individual participants that may lead to differences
in perceptual processing or category learning in general.

Implications for models of category learning

Our results demonstrate that the nature of perceptual dimen-
sions, in terms of their perceptual interaction or non-separa-
bility, impacts category learning. The influence of dimensions
was apparent in the course of learning, the strategies partici-
pants applied in learning, and in generalization of learning.
The current study demonstrates that for the COVIS dual-
systems approach to be sufficiently expanded into the auditory
domain, the role and influence of integral or interacting di-
mensions must be taken into account. It will be important to
consider not only sampling across input dimensions, but also
the mapping of these dimensions to perceptual dimensions.
Acoustic dimensions, including those important for speech,
are often highly integral and often are not easily verbalizable
(Garner, 1974; Grau & Kemler Nelson, 1988; Melara &
Marks, 1990). Speech categories are highly multidimensional,
with dimensions that are difficult to describe verbally and are
often perceptually integral (Francis et al., 2000; Grau &
Kemler Nelson, 1988; Hillenbrand et al., 1995). Researchers
have demonstrated that many acoustic dimensions that con-
tribute to speech perception are perceptually integral
(Kingston, Diehl, Kirk, & Castleman, 2008; Macmillan,
Kingston, Thorburn, Walsh Dickey, & Bartels, 1999). This
perceptual integrality of speech dimensions may be driven
by physical constraints on articulatory mechanisms that ren-
ders acoustic input dimensions to be interdependent (Carré,
2009) in the manner of the “natural co-variation” that we posit
to explain the relationship between CF and MF in the current
study. Alternatively, this integrality may also be a conse-
quence of some psychoacoustic similarity between the dimen-
sions (Diehl, 2008; Kingston et al., 2008; Macmillan et al.,
1999). The issue of how and why acoustic dimensions co-vary
has been engaged with in speech perception and has produced
strong debates about whether this co-variation arises from
environmental co-variation or from similar underlying audito-
ry properties (Diehl & Kluender, 1989; Fowler, 1989). While

the dimensions in the current study are not speech dimensions,
the theoretical issue is quite similar and general theories of
auditory categorization might benefit from engaging with the
evidence from speech.

Although we set out to test predictions of the dual-systems
perspective with auditory dimensions that are difficult to se-
lectively attend to, the most meaningful patterns in the data
were not between Il and RB categories. Instead, stark differ-
ences within each category type (Ipositive VS. Inegatives RBmF
vs. RBcp) emerged that are not easily explained by existing
dual-systems frameworks. Our results indicate that under-
standing category learning requires understanding how the
dimensions that define the space in which categories are situ-
ated are represented perceptually. The present results caution
that the categories laid out on the page as orthogonal dimen-
sions (acoustic categories, in this case), may not align with
traditional conceptualizations of RB and II categories. Instead,
the defining factor in determining whether categories are bet-
ter described as II or RB relies on the perceptual not the
physical space. A potential consequence of this is that catego-
ry exemplar distributions that may appear to be RB (or II)
learning challenges in the physical space may not truly be
RB (or II) problems after taking into account representations
in the perceptual space.

It is important to note that category-learning theories apart
from COVIS have focused attention on dimensions or how
participants weight different cues during learning (Francis &
Nusbaum, 2002; Goldstone, 1993, 1994; Nosofsky, 1986).
However, these models still assume that learners are generally
flexible and adaptable and can learn to shift attention within
the input space to respond to the demands of the current
category-learning challenge. Additionally, many of these
models do not propose a neurobiologically plausible account
of how attention to dimensions interacts with category learn-
ing. Future research will need to address how to integrate
theories to advance understanding of the interplay of percep-
tual encoding, attention, and learning involved in acquiring
new categories.

Conclusion

The dimensions that define categories affect the ability to learn
those categories. Here, participants demonstrated a bias to
integrate across acoustic dimensions in a way that reflected a
positive relationship between dimensions. This led to high
accuracy for II categories requiring positive integration but
was detrimental for learning statistically equivalent sampling
of II category exemplars that required negative integration
across dimensions. Participants often integrated along the di-
mensions even when this strategy was suboptimal for learn-
ing, in the case of RB categories. These suboptimal integration
strategies were not detrimental for learning in the RByr
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condition. However, learning in the RBcr condition was
worse than in the RBy condition. Thus, the dimensions used
to define categories and the relationship between those dimen-
sions greatly affected participants’ category-learning perfor-
mance, the strategies they used during learning, and their abil-
ity to generalize category learning to novel exemplars. The
interaction of dimensions in experience and perception im-
pacts category learning in a way that is currently unexplained
by the existing COVIS dual-systems framework and other
models of category learning. Thus, we caution for the need
to consider that the input space is not necessarily homologous
with the perceptual space as this has important effects on cat-
egory learning.
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